Fibrous scaffolds with enhanced functionalities for cardiac tissue engineering


Investigator: Lena Vogt (PhD Student) Lena Vogt

Ulrich-Schalk-Straße 3
91056 Erlangen

room: 01.134

phone: +49 (0)9131 85-69637



Betreuer: Prof. Dr.-Ing. habil. Aldo R. Boccaccini

Unlike other tissues such as bone or skin, myocardial tissue exhibits very limited intrinsic regeneration ability. Due to this shortage, cardiovascular diseases such as myocardial infarction could lead to the loss of cardiac cells and the formation of scar tissue, eventually resulting in chronic or congestive heart failure. Here, a promising approach represents the application of tissue engineered constructs, i.e. cardiac patches [1]. This project involves the development, characterization and optimization of a new family of bilayered and biomimetic fibrous scaffolds based on synthetic polymers combined with natural components of the extra cellular matrix (ECM). The designed scaffolds, which should exhibit mechanical properties and degradation behaviour suitable for their use as a cardiac patch, will mimic the anisotropic structure and mechanical properties of the native cardiac ECM and will exhibit surface functionalities to provide cell contact guidance [2]. The project is funded by the German Science Foundation (DFG) and involves collaboration with Prof. Felix Engel (Professorship for Experimental Renal and Cardiovascular Research, University Hospital Erlangen).

[1] H. Jawad, et al., Myocardial tissue engineering: a review, J. Tissue Eng. Regen. Med. 1 (2007) 327–342.

[2] M. Tallawi, et al., Poly (glycerol sebacate)/poly (butylene succinate-butylene dilinoleate) fibrous scaffolds for cardiac tissue engineering, Tissue Eng. Part C: Methods 21 (2015), 585-596.